
ALCF
Argonne Leadership
Computing Facility

BG/L Optimization Tips
Argonne Leadership Computing Facility

Dinesh Kaushik
Andrew Siegel
Argonne National Laboratory and University of Chicago

February 7, 2007

2INCITE Applications Workshop February 7-8, 2007

Practical Optimization Steps

Start with those that require no code modification
– Compiler switches
– Virtual-node vs. co-processor mode
– Using optimized libraries (DGEMM, MASSV, etc.)
– Parallel opts

• MPI_EAGER_LIMIT
• Explicit mapping
• Etc.

Use directives within code
– Alignment assertions
– Aliasing assertions
– Loop unrolling suggestions
– Vectorization suggestions

3INCITE Applications Workshop February 7-8, 2007

Practical Optimization Steps

Hierarchy of direct code modifications
– Appropriate if performance bottlenecks are highly concentrated
– Rearranging memory

• Cache reuse
• Contiguous pairs of doubles allow for quad-word loads

– Use double-hummer intrinsics
• Register/instruction schedule still done by compiler

– Hand-Coding assembler

4INCITE Applications Workshop February 7-8, 2007

BG/L Compute Chip

Source: IBM

5INCITE Applications Workshop February 7-8, 2007

PPC440 Characteristics

32-bit architecture at 700 MHz

Single integer unit

Single load/store unit

Special double floating-point unit (double hummer)

Floating-point pipeline: 5 cycles

Floating-point load-to-use latency: 4 cycles

6INCITE Applications Workshop February 7-8, 2007

Double FPU

Double FPU has 32 primary floating-point registers,
32 secondary floating-point registers, and supports:
– Standard PowerPC instructions, which execute on fpu0

(lfd, fadd, fmadd, fadds, fdiv, …), and
– SIMD instructions for 64-bit floating-point numbers

(lfpdx, fpadd, fpmadd, fpre, …)

7INCITE Applications Workshop February 7-8, 2007

Compute Chip Characteristics

L1 Data cache
– 32 KB total size, 32-Byte line size, 64-way associative,

round-robin replacement

L2 Data cache
– Prefetch buffer, holds 16 128-byte lines

L3 Data cache
– 4 MB, ~35 cycles latency, on-chip

Memory
– 512 MB DDR at 350 MHz, ~85 cycles latency

8INCITE Applications Workshop February 7-8, 2007

Peak Flop/s

700 Hz * 2 flops/cycle * 2 fpus =
– 2.8 GFlop/s theoretical peak per processor

Assumes quite a few things
– All FMAs
– Perfect use of double hummer (more soon)
– Significant cache reuse (e.g., not streaming)
– Not load bound
– Can fill 5-stage pipeline
– Etc.

Caution: %-peak is only meaningful in comparison to something.
– 10% may be good, 1% may be good, 50% may be bad…

9INCITE Applications Workshop February 7-8, 2007

Memory Bandwidth

L1-cache: can complete 1 quadword load per clock cycle:
16B*700/s = 11.2GB/s

Out of L1-cache: depends on complex three-level memory hierarchy
Theoretical max = 3.7GB/s

10INCITE Applications Workshop February 7-8, 2007

IBM XL Compiler Optimizations

General optimization levels
– Default optimization = none (very slow)
– -O: good place to start, use with -qmaxmem=64000
– -O2: same as -O
– -O3 -qstrict: can try more aggressive optimization but must strictly

obey program semantics
– -O3: aggressive, allows re-association, will replace division by

multiplication with the inverse
– -qhot: turns on high-order transformation module will add vector

routines, unless -qhot=novector
– -qreport: vectorization/optimization report on loops
– -qipa: inter-procedure analysis; may cause very slow compilation

11INCITE Applications Workshop February 7-8, 2007

IBM XL Compiler Optimizations (cont.)

Architecture flags
– -qalign=… (fortran only)
– -qarch=440 : generates standard powerpc instructions
– -qarch=440d : will try to generate double FPU code

Suggested steps on BG/L
– -O -qarch=440 -qmaxmem=64000 (KB of memory used by compiler)
– -O3 -qarch=440/440d (-qmaxmem=-1 is default at –O3)
– -O4 -qarch=440d -qtune=440 (or -O5…)
– -O4 = -O3 -qhot -qipa=level=1 -qarch=auto
– -O5 = -O3 -qhot –qipa=level=2 -qarch=auto

Use –v flag or check .lst file to see all flags used in compilation.

12INCITE Applications Workshop February 7-8, 2007

Compiler Listing

-qsource –qlist
– Creates .lst file containing assembler listing
– Highly recommended when trying to squeeze performance

out of numerical kernel
– Try different compiler flags and study code that is generated

to understand performance

13INCITE Applications Workshop February 7-8, 2007

Runtime Mode

Virtual-node mode
– Each processor on a node runs as its own MPI task

and gets ½ total RAM (256MB each).
– Use cqsub -m vn

Co-processor mode
– One CPU is used for message passing and the other

for computation.
– Compute processor gets full 512Mb RAM.
– Use cqsub –m co

14INCITE Applications Workshop February 7-8, 2007

Optimized Libraries

ESSL BG/L port available

No plans for PESSL port

Vanilla version of ESSL routines (BLAS, LAPACK, FFTW, etc.)
performs poorly.

See cheat sheet for more details/examples.

15INCITE Applications Workshop February 7-8, 2007

Cache Parity

Memory errors occur at a small but nonzero rate
– L1 date and instruction cache
– TLB

Usually correctable, but longer jobs are likely to see them more.

Use Write Through policy
– BGL_APP_L1_WRITE_THROUGH=1

Bypass L1
– BGL_APP_L1_SWOA=1

Performance penalty ~ 10%-30%

16INCITE Applications Workshop February 7-8, 2007

MPI Mapping

With virtual node mode, experiment with BGLMPI_MAPPING=TXYZ.
– This puts tasks 0 and 1 on the first node, tasks 2 and 3 on the next

node, with nodes in x, y, z torus order.
– The default layout is XYZT, which is often less efficient than TXYZ.
– Also note that in TXYZ mode, you get two tasks per node if you have

#tasks < 2*#nodes; otherwise, the XYZT layout will leave just one
task on at least some nodes.

– Can also write a mapfile to explicitly control processor mapping

17INCITE Applications Workshop February 7-8, 2007

EAGER_LIMIT

BG/L can route messages either statically or dynamically.

By default, small messages (those smaller than MPI_EAGER)
are routed statically, and large ones are routed dynamically.

These can be controlled with the following environment variables
(see cheat sheet for passing these to Cobalt):
– BGLMPI_EAGER = 1000 (default is 10000)

• Sets limiting message size in bytes for eager protocol
– BGLMPI_AE = 1

• To try adaptive route for eager message. Default is static.

18INCITE Applications Workshop February 7-8, 2007

Random Exchange 8x8x8 Torus

Source: IBM

19INCITE Applications Workshop February 7-8, 2007

Mapping and Eager Limit on PETSc-FUN3D

20INCITE Applications Workshop February 7-8, 2007

Compiler Assertions

Three compiler assertions are particularly important for generating optimal
code:
– Alignment

• call alignx(16,x(1)) Fortran
• __alignx(16,x) C

– Inform compiler that variable x is aligned on a 16-byte boundary.
– Aliasing

• #pragma disjoint(*a,*b) C only
– Inform compiler that a and b will not refer to overlapping memory.

– Unrolling
• !ibm* unroll(n) Fortran
• #pragma unroll(n) C

– Unroll inner loop that follows n elements.

21INCITE Applications Workshop February 7-8, 2007

C
double * x, * y;
#pragma disjoint (*x, *y)
__alignx(16,x);
__alignx(16,y);
#pragma unroll(10)
for (i=0; i<n; i++) y[i] = a*x[i] + y[i];

Example with DAXPY

Fortran
call alignx(16,x(1))
call alignx(16,y(1))
!ibm* unroll(10)
do i = 1, n
y(i) = a*x(i) + y(i)
end do

22INCITE Applications Workshop February 7-8, 2007

void triad(double *a, double *b, double *c, int n)
{

int i;
double ss = 1.2;
/* --Align;;var:a,b,c;; */
for (i=0; i<n; i++)

a[i] = b[i] + ss*c[i];
/* --end Align */

}

void triad(double *a, double *b, double *c, int n)
{

int i;
double ss = 1.2;
/* --Align;;var:a,b,c;; */
for (i=0; i<n; i++)

a[i] = b[i] + ss*c[i];
/* --end Align */

}

void triad(double *a, double *b, double *c, int n)
{
#pragma disjoint (*c,*a,*b)

int i;
double ss = 1.2;
/* --Align;;var:a,b,c;; */

if (((int)(a) | (int)(b) | (int)(c)) & 0xf == 0) {
__alignx(16,a);
__alignx(16,b);
__alignx(16,c);

for (_i=0;_i<n;_i++) {
a[_i] = b[_i] + ss*c[_i];

}
}
else {

for (_i=0;_i<n;_i++) {
a[_i]=b[_i]+ss*c[_i];

}
/* --end Align */

}

Annotations Example:
STREAM triad.c

23INCITE Applications Workshop February 7-8, 2007

Performance of STREAM triad.c

Size No Annotations
(MB/s)

Annotations (MB/s)

10 1920.00 2424.24
100 3037.97 6299.21

500000 1291.81 1830.89
1000000 1282.12 1442.17
2000000 1282.92 1415.52

1000 3341.22 8275.86
10000 1290.81 3717.88
50000 1291.52 3725.48

100000 1291.77 3727.21

5000000 1290.81 1446.48

24INCITE Applications Workshop February 7-8, 2007

Double-Hummer Examples

See ~siegela/examples/ on bgl
– mxm

• In-cache matrix-matrix products using double-hummer intrinsics
– dotp

• dot product using double-hummer intrinsics and ensuring
alignment

– ax+b

25INCITE Applications Workshop February 7-8, 2007

Listing File

Use –qsource –qlist to generate friendly assembler listing.

Good strategy is to tweak source, compiler options and diagnose
with .lst output, rather than hand-coding assembler.

26INCITE Applications Workshop February 7-8, 2007

Performance Tools

Currently installed performance tools
– gprof for per-routine timings
– memmon for detecting high-water memory mark
– mpitrace for automatically timing mpi calls
– stackmonitor for monitoring stack size
– hpmlib preliminary port
– papi for hardware counters
– tau for more integrated and complex analysis

• Requires PAPI or hpmlib for hardware counters

See cheat sheet for examples of how to use.

	BG/L Optimization Tips ��Argonne Leadership Computing Facility�
	Practical Optimization Steps
	Practical Optimization Steps
	BG/L Compute Chip
	PPC440 Characteristics
	Double FPU
	Compute Chip Characteristics
	Peak Flop/s
	Memory Bandwidth
	IBM XL Compiler Optimizations
	IBM XL Compiler Optimizations (cont.)
	Compiler Listing
	Runtime Mode
	Optimized Libraries
	Cache Parity
	MPI Mapping
	EAGER_LIMIT
	Random Exchange 8x8x8 Torus
	Mapping and Eager Limit on PETSc-FUN3D
	Compiler Assertions
	Example with DAXPY
	Annotations Example: �STREAM triad.c
	Performance of STREAM triad.c
	Double-Hummer Examples
	Listing File
	Performance Tools

